
Controlling TCP behavior over lossy links
M. Alnuem, J. Mellor and R. Fretwell

Abstract—Many previous attempts to improve TCP performance over
lossy links especially error discriminators did not propose a comprehen-
sive response in case of non-congestion drops. In this paper we propose a
new algorithm to control TCP congestion window reaction to transmission
(non-congestion) drops. This algorithm will be the first step for more
comprehensive solution. The new algorithm managed to improve TCP
performance in non-aggressive way by increasing the average congestion
window size. On the other hand, it cuts the congestion window for both
congestion and non-congestion errors which help to reduce the effect
of error mismatch on the network. Simulation results shows noticeable
improvement when the new technique is added to an error discriminator.
Also we discuss some limitations to the new algorithm.

Keywords—Error discriminators, Lossy networks, TCP

I. INTRODUCTION

One technique to increase TCP performance over lossy networks
is to use TCP error discriminators. Error discriminators are algo-
rithms that can be used to replace standard TCP congestion window
mechanism[1][2] and try to understand the cause of the packet drops
and then make TCP to act differently for each type of error.

The main aim for an error discriminator is to distinguish between
error types with high accuracy to avoid increasing the congestion
on then network. This is because many error discriminators has been
based on the idea that if we can discriminate between congestion and
transmission (non-congestion) errors correctly then the action towards
transmission drops can be as simple as not to cut the congestion
window in case of non-congestion drops.

The same problem can be looked at from different angle so instead
of only trying to increase the error discriminator accuracy we will
implement an efficient action for transmission drops which should
hold following properties:

• It will not increase the network congestion rate by cutting the
congestion window even for transmission errors.

• It will increase TCP performance in case of transmission drops
by delaying window cut decision until TCP knows how many
packets are dropped.

Adaptive congestion window cut strategy and delaying congestion
window cut until TCP receives the full window are the main contri-
bution of this work.

II. NEW CONGESTION WINDOW CUT POLICY FOR TRANSMISSION

ERRORS

Do we need to cut congestion window for transmission (non-
congestion) errors? and assuming we can discriminate between error
types, what is the proper action TCP should take with transmission
drops? The trivial action when transmission drops occur is to
resend the lost packet and avoid reducing the congestion window.
This approach has been the base of most sender based end to end
solutions like [3] and [4]. This is based on the following reasoning:
a general formula to compute TCP throughput by using the round

M. Alnuem, J. Mellor and R. Fretwell are with School of Informatics, University
of Bradford, Bradford BD7-1DP, United Kingdom. (e-mails: {m.alnuem, j.e.mellor,
r.j.fretwell}@brad.ac.uk; phone:00441274233913; Fax:00441274233920)

trip time and the window size is [5]:

Throughput =
Wi

RTTi
(1)

Where Wi is the window size in round trip time RTTi and the average
throughput can be captured as following :

AvgThroughput =
AvgW

AvgRTT
(2)

So if we can keep the average window size as large as possible during
the transmission drops then the throughput should be higher than the
conventional TCP (where the window size is cut to half with every
drop) assuming we have fixed AvgRTT (i.e. the AvgRTT does not
increase with the increase in congestion window). However, we think
that a trivial solution is not always the answer. Some times it is better
to cut the congestion window even for transmission drops.

For example in high speed networks TCP requires a big window
size in order to make use of the available link capacity. Also, If the
link capacity is required by other senders, TCP will slow down by
cutting the congestion window. However if TCP keeps big window
all the time this will result eventually in increasing the load on the
network and hence increasing the end to end packet round trip time.
Moreover, if one link in the connection path suffers from transmission
errors, then the link layer will be busy resending the corrupted packets
and hence its goodput will decrease. This will create more delay since
the link layer will be forced to buffer the packets until they correctly
retransmitted or even to drop them if the buffer size is not enough.
So in general it is desirable to control the increase in the congestion
window in case of transmission errors for the following reasons:

• Controlling the increase of the congestion window even for
transmission errors can prevent undesirable large packet drops
during transient congestion phases. If a congestion happen while
the congestion window is open wide, a large number of packets
can be dropped which make TCP to enter a series of timeout
events. These timeout events will force TCP to wait idle and
also will increase exponentially with each successive timeout.

• Uncontrolled increase in the congestion window can lead to
increase in the network load which will lead to increase in the
RTT and any increase in the RTT has mainly two side effects
on TCP throughput: the rate of increase in the RTT can be more
than the rate of increase in the congestion window size and this
will cancel any gain in the throughput. see equation 2. Another
effect of the increase in the connection RTT is that it increases
the retransmission timeout and hence increasing the period TCP
should wait after errors.

• In many networks the link layer is responsible for buffering and
retransmitting lost packets cased by link failure. However, if the
end point sender keeps sending at high rates with no regard to
transmission drops, the link layer will be forced to buffer large
amounts of data or even drop some of the packets which will
lead eventually to increasing the end-to-end RTT [6].

All these factors will result eventually in increasing the per-
packet delay and hence increasing the average round trip time for

16th Telecommunications forum TELFOR 2008 Serbia, Belgrade, November 25-27, 2008.

941

the whole connection (AvgRTT). From that we can see that if the
error discriminator does not cut the congestion window in case of
transmission drops the RTT may increase in away that could cancel
any benefit gained from increasing the congestion window size. For
this reason the authors in [6] indicated that not cutting the congestion
window for transmission drops is a bad policy and suggested to cut
the congestion window by one for every transmission drop.

The algorithm:
We will call the proposed algorithm the congestion window action

(CWA) and it works as following: Instead of cutting the congestion
window after receiving 3 duplicate acknowledgment, see figure 1,
we delay the cut decision until TCP receives all duplicate acknowl-
edgment for current window (i.e. the packets on flight during the
drop) see figure 2. Duplicate acknowledgments indicate a packet

Fig. 1. TCP duplicate acknowledgment action

Fig. 2. CWA duplicate acknowledgment action

drop but also indicate how many packets has left the network
(received by the other end). Using this information we can estimate
how many packets were dropped per window (droppedpackets =
Windowsize−No.DACKs). In case of transmission drops, instead
of cutting the congestion window to half (as TCP) or not cutting it at
all we cut number equals to dropped packets. This way TCP cuts the
congestion window in a rate related to number of dropped packets.
The benefit of this technique is that it improves the performance and
avoid increasing the congestion level at the same time. The algorithm
is presented in figure 3.

1: Initialization: prev ack = -1; last sent = -1
2: With every received acknowledgment Acki:
3: current ack = Acki

4: if (current ack == prev ack) then . Duplicate ack
5: dackcount = dackcount+1
6: if dackcount == 3 then . Packet drop
7: last sent = Pmax

8: resend packet with seqNo = current ack+1 . No cut for
cwnd

9: end if
10: end if
11: if (current ack > prev ack) then . no more DACKs
12: prev ack = current ack
13: if (last sent > current ack) then . Some packets still not

ackowledged
14: compute number of drops and reduce cwnd:
15: flight size = last sent − current ack
16: num drops = flight size − dackcount
17: cwnd = cwnd − num drops
18: end if
19: end if
20: if timeout==true then
21: ssthresh = cwnd/2 . Actually ssthresh = min(2,cwnd/2)
22: cwnd = 1
23: end if

Variables:
current ack: Sequence number of current acknowledgment.
prev ack : Sequence number of prev acknowledgment (new
acknowledgment only).
dackcount : Variable to keeps track of how many duplicate
acknowledgment TCP received so far. This variable is set to 0
whenever a new acknowledgment is received.
last sent: Variable to store sequence number of last sent packet.
Pmax: Last sent packet.
flight size: Number of packets sent but not acknowledged yet.
num drops: Number of packets dropped from this flight.
cwnd: Congestion window size.
ssthresh: Slow Start threshold.
RTO: Retransmission timeout timer. Calculated based in the average
RTT.

Fig. 3. CWA Pseudo code

Note that In case of transmission error we keep the ssthresh and
only change the cwnd since the drop is not congestion error and
probably the link capacity (indicated by ssthreah) has not changed.

The CWA should be used in case of transmission errors only.
However, if the error discriminator wrongly used CWA for congestion
errors as well then the congestion in the network may increase.
To solve this problem we will define another threshold we call it
transmission drops threshold (tthresh). It will be used to recored the
congestion window size (cwnd) when the first drop occur. It will
define the area between the start of congestion avoidance phase (i.e.
from ssthresh) and the first drop . Since this is the first drop then we
call the cwnd size up to tthresh the safe area.

Changes after adding tthresh are presented in figure 4. The main

942

change is that after the first drop the value of cwnd is saved in tthresh.
Later when another drop occur the error discriminator will check if
cwnd ≤ tthresh and if so the drop is probably a transmission drop.
Otherwise the drop is congestion drop.

1: Initialization: prev ack = -1; last sent = -1; first drop = 1
2: With every received acknowledgment Acki:
3: current ack = Acki

4: if (current ack == prev ack) then . Duplicate ack
5: dackcount = dackcount+1
6: if dackcount == 3 then . Packet drop
7: last sent = Pmax

8: resend packet with seqNo = current ack+1 . No cut for
cwnd

9: if first drop then
10: tthresh = cwnd
11: first drop = 0
12: end if
13: end if
14: end if
15: if (current ack > prev ack) then . no more DACKs
16: prev ack = current ack
17: if (last sent > current ack) then . Some packets still not

ackowledged
18: compute number of drops and reduce cwnd:
19: flight size = last sent − current ack
20: num drops = flight size − dackcount
21: if cwnd < tthresh then
22: cwnd = cwnd − num drops
23: else
24: cwnd = cwnd / 2
25: ssthresh = cwnd
26: end if
27: end if
28: end if
29: if timeout==true then
30: ssthresh = cwnd/2 . Actually ssthresh = min(2,cwnd/2)
31: cwnd = 1
32: first drop = 1 . Initialize first drop after each timeout
33: end if

Variables:
first drop: Flag to indicate that first drop in this connection has
occured.

Fig. 4. CWA+tthresh Pseudo code

III. PERFORMANCE OF CWA

In order to measure the improvement using CWA we will measure
TCP goodput (the actual amount of date received regardless of
retransmissions) after and before adding CWA to TCP. Also we
will measure congestion window size during the connection life
time. The topology used represents TCP sender with continuance
demand to send data (FTP application with big files) and suffers
from transmission errors in one link of the connection path. Similar
topology is used to test TCP over lossy links by other authors like [7].
We use this simple topology with one sender because we want only

Fig. 5. TCP vs. CWA.

Fig. 6. TCP vs. CWA. log scale congestion window size

to test the performance with transmission errors (we will use more
complex topology later when we add CWA to the error discriminator).
The transmission errors are created on the last link using a two-state
Markovian model. This model has been used by authors like[8][6][7]
to simulate wireless errors.

The chart in figure 5 shows that after adding CWA to TCP the
performance has improved. This improvement is caused by CWA
preventing unnecessary congestion window cuts and limiting the cuts
to the number of lost packets in case of transmission drops. Figure
6 shows the average congestion window for TCP before and after
adding CWA. As we can see CWA has a positive effect on the average
window size of TCP (the size is measured in number of packets).
The increase in congestion window size will increase TCP sending
rate. Also it will help recover errors quickly and hence reducing
number and length of retransmission timeout evens. Reducing number
of RTO evens will reduce the the total time TCP stays idle and
hence will increase the throughput. Our simulation results show
improvement in number of RTO events after using CWA. The increase
in congestion window size has reduces the chance to have RTO in
case of CWA because with bigger window TCP gets more duplicate
acknowledgment after drops. These duplicate acknowledgments will
trigger lost packet retransmission and will increase the congestion
window during the fast recovery phase.

However, due to the fact that the increase in the error rate will
increase the timeout durations, the congestion window will not have
chance to grow after a timeout event. Moreover, with the increase
in error rate many packets will be dropped more than once and
since TCP resends the packet only once per window more longer
retransmission timeout will occur.

One limitation for CWA is that its performance depends on the tim-

943

ing when transmission errors occur (since CWA sets tthresh after
first drops). However, in our work TCP should recalculate tthresh
after each timeout event because TCP will initialize the congestion
window and will start building a new window. This is done in the
algorithm by using first drop which will be set to one after each
timeout and hence allowing tthresh to take a new cwnd.

Another problem that decreases the performance of CWA is multi-
ple drops per window of data. Since TCP resends only one dropped
packet per window the rest will be recovered through timeout. This
will increase number and duration of timeout which will affect the
performance of CWA. In the future work we will solve the problem
by using a multiple drops action algorithm MDA[9].

IV. PERFORMANCE WITH ERROR DISCRIMINATOR

The main purpose of this paper is to present the CWA algorithm
and to show how it improves TCP performance in presence of
transmission errors only. However, the actual benefit of CWA will be
when it is added to an error discriminator to implement TCP reaction
to transmission errors (as we explained before, error discriminator
usually do nothing when transmission errors occur). So in order to
make the picture more complete we added CWA to an end-to-end
error discriminator based on spike [10] and MDA [9] schemes.

Initial results shows that the new error discriminator, named
ED+CWA, managed to outperform TCP (TCP-Reno) with increased
transmission error rate and with presence of congestion drop rate
between 1%-2%. Figure 7 shows the results. Moreover, the new

Fig. 7. TCP vs. ED+CWA normalized fair share throughput

error discriminator is able to maintain the same average queue size
(around 34 KB) at the bottleneck buffer which indicates that CWA
has successfully prevented increasing the congestion level caused by
error discriminator mismatches. In our experiments we use a simple
yet sufficient topology which contains TCP and UDP sources. The
UDP sources are used to create cross traffic. TCP sources are mixture
of standard TCP and the new (ED+CWA) protocol we want to test.
We have two destinations D1 and D2. The link to the destinations
pass through two intermediate routers R1 and R2. ED+CWA pass
through the path which suffers from transmission errors at the last
hop. Cross traffic is used to create the required level of congestion
drops by varying the UDP sources sending rate.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new TCP congestion window action
(CWA) for transmission(non-congestion) errors based on delaying the
congestion window cut decision until TCP has a complete picture of
number of dropped packets per window. The algorithm reduces the
congestion window size when transmission drops happens using this

number (i.e. calculated number of dropped packets). The CWA has
been added to TCP and results show improvement in average goodput
over TCP. The merit of the CWA is that it defines a TCP congestion
window cut policy which able to improve TCP performance and
cuts the congestion window even for transmission errors which will
prevent side effects caused by error discrimination mismatch between
error types. It will reduce the effect of error mismatches by allowing
second level check for the error type. First level is done by the error
discriminator and second level check is done by the CWA algorithm
using a new congestion window threshold called tthresh. This
will prevent unnecessary congestions when the error discriminator
mismatches errors. Also, CWA showed that it is able to keep same
level of bottleneck load as TCP.

However, CWA performance depends on when transmission errors
occur. Solutions for this problem will be discussed in the future work.
Another problem is that due to the increase in the number of RTO
evens and RTO durations the new algorithm performance decreases
with the increase in the error rate. We solve the problem by adding
a multiple drop action MDA [9] which reduces both number of RTO
events and RTO durations. An important feature of CWA algorithm
is that it does not require any change in the network or in the receiver
(the client). Only TCP on the sender (the server) need to be changed.
In present we are working on a complete set of algorithms which are
combined will form a complete mechanism to govern TCP end-to-end
error discriminators reaction for transmission drops.

REFERENCES

[1] V. Jacobson. Congestion avoidance and control. In Symposium pro-
ceedings on Communications architectures and protocols, pages 314–
329, Stanford, California, United States, 1988. ACM Press. Conference
Paper.

[2] Van Jacobson. Modified tcp congestion avoidance algorithm. Technical
Report 30, 1990.

[3] Saad Biaz and Xia Wang. Can ecn be used to differentiate congestion
losses from wireless losses? Technical Report CSSE04-04,Auburn
University, 2004.

[4] C. Lim. An adaptive end-to-end loss differentiation scheme for tcp over
wired/wireless networks. IJCSNS, 7(3):72, 2007.

[5] Mahbub Hassan and Raj Jain. High Performance TCP/IP Networking
Concepts,Issues and Solutions. Prentice Hall, 2005.

[6] Saad Biaz and Nitin H. Vaidya. De-randomizing congestion losses to
improve tcp performance over wired-wireless networks. IEEE/ACM
Trans. Netw., 13(3):596–608, 2005.

[7] Guang Yang, Ren Wang, Mario Gerla, and M. Y. Sanadidi. Tcp bulk
repeat. Computer Communications, 28(5):507–518, 2005.

[8] S. Biaz and N. H. Vaidya. Differentiated services: A new direction for
distinguishing congestion losses from wireless losses. Technical report,
University of Auburn, 2003. Report No. : CSSE03-02.

[9] M. Alnuem, J. Mellor, and R. Fretwell. Tcp multiple drop action
for transmission errors. In PGnet2008 The 9th Annual Postgraduate
Symposium on the Convergence of Telecommunications, Networking and
Broadcasting, 2008.

[10] Song Cen, Pamela C. Cosman, and Geoffrey M. Voelker. End-to-end
differentiation of congestion and wireless losses. IEEE/ACM Trans.
Netw., 11(5):703–717, 2003.

944

